home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Singles Flirt Up Your Life! (German)
/
Singles Flirt Up Your Life.iso
/
data1.cab
/
MeshLow
/
LampCeilingModern2.ams
< prev
next >
Wrap
Text File
|
2004-01-29
|
29KB
|
1,564 lines
Wonderlib::MVFMesh object
{
boneName
{
}
boneWeight
{
}
material
{
Wonderlib::Material 0
{
ambient = 0.5 0.5 0.5 1
bumpmap =
diffuse = 1 1 1 1
dstBlend = 5
name = lampCeilingModern2_mat3
power = 8
specular = 0.28206 0.28206 0.28206 0.5
srcBlend = 4
texture = lampCeilingModern2
type = 536871185
uOffset = 0
uRepeat = 1
vOffset = 0
vRepeat = 1
}
Wonderlib::Material 1
{
ambient = 0 0 0 1
bumpmap =
diffuse = 1 0.980522 0.858 1
dstBlend = 5
name = LampTableOldschool_Bulb
power = 8
specular = 1 1 1 0.5
srcBlend = 4
texture =
type = 256
uOffset = 0
uRepeat = 1
vOffset = 0
vRepeat = 1
}
Wonderlib::Material 2
{
ambient = 0.164138 0.184623 0.214 1
bumpmap =
diffuse = 0.627575 0.659376 0.69422 1
dstBlend = 5
name = lampCeilingModern1_mat
power = 20
specular = 0.66666 0.66666 0.66666 0.40498
srcBlend = 4
texture =
type = 8448
uOffset = 0
uRepeat = 1
vOffset = 0
vRepeat = 1
}
}
normalVertex
{
0 = 3.84484e-008 -8.77512e-008 1
1 = -0.00148565 -0.741554 0.670892
2 = -0.636315 -0.375459 0.673894
3 = -0.635162 0.376872 0.674193
4 = 0.00148585 0.741554 0.670892
5 = 0.636315 0.37546 0.673894
6 = 0.635163 -0.376872 0.674193
7 = -0.00178003 -0.923437 0.383747
8 = -0.793665 -0.468605 0.387949
9 = -0.792357 0.470529 0.388294
10 = 0.0017805 0.923437 0.383746
11 = 0.793666 0.468605 0.387949
12 = 0.792357 -0.470529 0.388294
13 = -0.00187658 -0.980276 0.197627
14 = -0.843613 -0.498153 0.200401
15 = -0.84231 0.500265 0.200621
16 = 0.0018767 0.980276 0.197627
17 = 0.843613 0.498154 0.200402
18 = 0.84231 -0.500265 0.200621
19 = -0.00167425 -0.779299 0.62665
20 = -0.00187835 -0.991649 0.128953
21 = -0.667037 -0.393114 0.632869
22 = -0.853616 -0.504149 0.131045
23 = -0.665802 0.394446 0.633341
24 = -0.852307 0.506317 0.131207
25 = 0.00167428 0.779299 0.62665
26 = 0.00187838 0.991649 0.128954
27 = 0.667037 0.393114 0.632869
28 = 0.853616 0.504149 0.131045
29 = 0.665802 -0.394446 0.633341
30 = 0.852307 -0.506317 0.131207
31 = -0.00164293 -0.829518 0.558477
32 = -0.711173 -0.419712 0.563982
33 = -0.709878 0.421311 0.56442
34 = 0.0016429 0.829518 0.558477
35 = 0.711173 0.419712 0.563982
36 = 0.709878 -0.421311 0.56442
37 = -0.00178792 -0.929057 0.369932
38 = -0.798617 -0.471545 0.373974
39 = -0.79731 0.473487 0.374309
40 = 0.00178793 0.929057 0.369932
41 = 0.798617 0.471545 0.373974
42 = 0.79731 -0.473487 0.374309
43 = -0.00188452 -0.984522 0.17525
44 = -0.847369 -0.50038 0.177724
45 = -0.846066 0.502509 0.177922
46 = 0.00188452 0.984522 0.17525
47 = 0.847369 0.50038 0.177724
48 = 0.846066 -0.502509 0.177922
49 = -0.00189086 -0.994562 0.104131
50 = -0.856216 -0.505662 0.105832
51 = -0.854913 0.507835 0.105961
52 = 0.00189087 0.994562 0.104131
53 = 0.856216 0.505662 0.105832
54 = 0.854913 -0.507835 0.105961
55 = -8.39834e-008 -2.33297e-007 -1
56 = 0.0096221 -0.831995 0.5547
57 = -0.72534 0.407664 0.5547
58 = 0.715717 0.42433 0.5547
59 = -0.736712 0.460104 0.49554
60 = -0.871749 0.489952 1.63684e-008
61 = 0.727081 0.475306 0.495417
62 = 0.860186 0.509981 8.86404e-009
63 = 0.0117944 -0.840986 0.540928
64 = 0.011564 -0.999933 2.09051e-008
65 = 0.71536 -0.69499 -0.0724499
66 = -0.696457 -0.713887 -0.0728992
67 = -0.712403 0.698852 -0.0639386
68 = 0.693495 0.7176 -0.0641491
69 = 0.522488 -0.508349 -0.684534
70 = -0.507078 -0.520464 -0.687014
71 = -0.522489 0.508349 -0.684534
72 = 0.507078 0.520465 -0.687014
}
positionVertex
{
0 = 0.0298836 0.0307886 2.75199
1 = -0.0302854 0.0295792 2.75199
2 = -0.0298836 -0.0307885 2.75199
3 = 0.0302854 -0.0295793 2.75199
4 = 0.0422059 0.043484 2.78311
5 = -0.0427733 0.0417761 2.78311
6 = -0.0422059 -0.043484 2.78311
7 = 0.0427733 -0.0417761 2.78311
8 = 0.000113007 -0.00977156 2.91676
9 = 0.00840592 0.00498365 2.91676
10 = -0.00851892 0.00478792 2.91676
11 = 0.00840591 0.00498366 3.49455
12 = -0.00851892 0.00478792 3.49455
13 = 0.00011301 -0.00977155 3.49455
14 = -1.80434e-009 -5.38389e-009 2.73567
15 = 0.121526 -0.0727553 2.61207
16 = 0.121613 0.072266 2.61207
17 = 0.000152559 0.139167 2.61207
18 = -0.121526 0.0727553 2.61207
19 = -0.121613 -0.072266 2.61207
20 = -0.000152559 -0.139167 2.61207
21 = 0.111562 -0.0667897 2.72106
22 = 0.111641 0.0663403 2.72106
23 = 0.000140028 0.127755 2.72106
24 = -0.111562 0.0667897 2.72106
25 = -0.111641 -0.0663403 2.72106
26 = -0.000140028 -0.127755 2.72106
27 = 0.0958033 -0.0573553 2.78999
28 = 0.0958716 0.0569697 2.78999
29 = 0.000120268 0.10971 2.78999
30 = -0.0958033 0.0573553 2.78999
31 = -0.0958716 -0.0569697 2.78999
32 = -0.000120268 -0.10971 2.78999
33 = 0.0710972 -0.0425645 2.83799
34 = 0.0711478 0.0422781 2.83799
35 = 8.92544e-005 0.0814173 2.83799
36 = -0.0710972 0.0425645 2.83799
37 = -0.0711478 -0.0422781 2.83799
38 = -8.92544e-005 -0.0814173 2.83799
39 = 0.0485416 -0.0290609 2.87011
40 = 0.0485762 0.0288654 2.87011
41 = 6.09303e-005 0.0555877 2.87011
42 = -0.0485416 0.0290609 2.87011
43 = -0.0485762 -0.0288654 2.87011
44 = -6.09303e-005 -0.0555877 2.87011
45 = 0.0403259 -0.0241422 2.94246
46 = 0.0403547 0.02398 2.94246
47 = 5.06425e-005 0.0461794 2.94246
48 = -0.0403259 0.0241422 2.94246
49 = -0.0403547 -0.02398 2.94246
50 = -5.06425e-005 -0.0461794 2.94246
51 = 0.0320367 -0.0191797 2.97579
52 = 0.0320595 0.0190507 2.97579
53 = 4.02021e-005 0.0366869 2.97579
54 = -0.0320367 0.0191797 2.97579
55 = -0.0320595 -0.0190507 2.97579
56 = -4.02021e-005 -0.0366869 2.97579
57 = 0.01851 -0.0110816 3.00159
58 = 0.0185232 0.011007 3.00159
59 = 2.32351e-005 0.0211969 3.00159
60 = -0.01851 0.0110816 3.00159
61 = -0.0185232 -0.011007 3.00159
62 = -2.32351e-005 -0.0211969 3.00159
63 = -3.88572e-010 -3.2716e-009 3.01436
}
textureTriangle
{
0
{
0 = 6 1 7
1 = 1 2 7
2 = 8 7 3
3 = 2 3 7
4 = 8 3 9
5 = 3 4 9
6 = 9 4 10
7 = 4 5 10
8 = 11 8 9
9 = 13 12 7
10 = 7 12 6
11 = 10 14 9
12 = 11 13 8
13 = 7 8 13
14 = 11 9 14
15 = 15 12 16
16 = 12 13 16
17 = 11 17 13
18 = 16 13 17
19 = 11 14 17
20 = 17 14 18
21 = 2 1 0
22 = 3 2 0
23 = 4 3 0
24 = 5 4 0
25 = 17 15 16
26 = 19 20 27
27 = 20 26 27
28 = 20 21 26
29 = 21 28 26
30 = 22 29 21
31 = 29 28 21
32 = 22 23 29
33 = 23 30 29
34 = 23 24 30
35 = 24 31 30
36 = 25 32 24
37 = 32 31 24
38 = 27 26 34
39 = 26 33 34
40 = 26 28 33
41 = 33 28 35
42 = 29 36 28
43 = 35 28 36
44 = 29 30 36
45 = 30 37 36
46 = 30 31 37
47 = 37 31 38
48 = 32 39 31
49 = 38 31 39
50 = 34 33 41
51 = 33 40 41
52 = 33 35 40
53 = 40 35 42
54 = 36 43 35
55 = 42 35 43
56 = 36 37 43
57 = 37 44 43
58 = 37 38 44
59 = 44 38 45
60 = 39 46 38
61 = 45 38 46
62 = 41 40 48
63 = 40 47 48
64 = 40 42 47
65 = 47 42 49
66 = 43 50 42
67 = 49 42 50
68 = 43 44 50
69 = 44 51 50
70 = 44 45 51
71 = 51 45 52
72 = 46 53 45
73 = 52 45 53
74 = 54 55 62
75 = 55 61 62
76 = 55 56 61
77 = 56 63 61
78 = 57 64 56
79 = 64 63 56
80 = 57 58 64
81 = 58 65 64
82 = 58 59 65
83 = 59 66 65
84 = 60 67 59
85 = 67 66 59
86 = 62 61 69
87 = 61 68 69
88 = 61 63 68
89 = 68 63 70
90 = 64 71 63
91 = 70 63 71
92 = 64 65 71
93 = 65 72 71
94 = 65 66 72
95 = 72 66 73
96 = 67 74 66
97 = 73 66 74
98 = 69 68 76
99 = 68 75 76
100 = 68 70 75
101 = 75 70 77
102 = 71 78 70
103 = 77 70 78
104 = 71 72 78
105 = 72 79 78
106 = 72 73 79
107 = 79 73 80
108 = 74 81 73
109 = 80 73 81
110 = 76 75 82
111 = 82 75 77
112 = 82 77 78
113 = 78 79 82
114 = 82 79 80
115 = 82 80 81
}
1
{
0 = 57 74 71
1 = 74 70 71
2 = 61 59 60
3 = 58 60 59
4 = 61 60 63
5 = 60 62 63
6 = 63 62 57
7 = 62 74 57
8 = 64 61 63
9 = 72 65 71
10 = 71 65 57
11 = 57 65 63
12 = 64 66 61
13 = 59 61 66
14 = 64 63 65
15 = 73 65 76
16 = 65 72 76
17 = 64 68 66
18 = 67 66 68
19 = 64 65 68
20 = 68 65 73
21 = 70 74 69
22 = 60 58 69
23 = 62 60 69
24 = 74 62 69
25 = 75 73 76
26 = 0 1 8
27 = 1 7 8
28 = 1 2 7
29 = 2 9 7
30 = 3 10 2
31 = 10 9 2
32 = 3 4 10
33 = 4 11 10
34 = 4 5 11
35 = 5 12 11
36 = 6 13 5
37 = 13 12 5
38 = 8 7 15
39 = 7 14 15
40 = 7 9 14
41 = 14 9 16
42 = 10 17 9
43 = 16 9 17
44 = 10 11 17
45 = 11 18 17
46 = 11 12 18
47 = 18 12 19
48 = 13 20 12
49 = 19 12 20
50 = 15 14 22
51 = 14 21 22
52 = 14 16 21
53 = 21 16 23
54 = 17 24 16
55 = 23 16 24
56 = 17 18 24
57 = 18 25 24
58 = 18 19 25
59 = 25 19 26
60 = 20 27 19
61 = 26 19 27
62 = 22 21 29
63 = 21 28 29
64 = 21 23 28
65 = 28 23 30
66 = 24 31 23
67 = 30 23 31
68 = 24 25 31
69 = 25 32 31
70 = 25 26 32
71 = 32 26 33
72 = 27 34 26
73 = 33 26 34
74 = 29 28 36
75 = 28 35 36
76 = 28 30 35
77 = 30 37 35
78 = 31 38 30
79 = 38 37 30
80 = 31 32 38
81 = 32 39 38
82 = 32 33 39
83 = 33 40 39
84 = 34 41 33
85 = 41 40 33
86 = 36 35 43
87 = 35 42 43
88 = 35 37 42
89 = 42 37 44
90 = 38 45 37
91 = 44 37 45
92 = 38 39 45
93 = 39 46 45
94 = 39 40 46
95 = 46 40 47
96 = 41 48 40
97 = 47 40 48
98 = 43 42 50
99 = 42 49 50
100 = 42 44 49
101 = 49 44 51
102 = 45 52 44
103 = 51 44 52
104 = 45 46 52
105 = 46 53 52
106 = 46 47 53
107 = 53 47 54
108 = 48 55 47
109 = 54 47 55
110 = 50 49 56
111 = 56 49 51
112 = 56 51 52
113 = 52 53 56
114 = 56 53 54
115 = 56 54 55
}
}
textureVertex
{
0
{
0 = 0.47616 1.41451
1 = 0.29136 1.35569
2 = 0.41456 1.35569
3 = 0.47616 1.35569
4 = 0.59936 1.35569
5 = 0.66096 1.35569
6 = 0.29136 1.17922
7 = 0.41456 1.17922
8 = 0.47616 1.17922
9 = 0.59936 1.17922
10 = 0.66096 1.17922
11 = 0.56856 0.738042
12 = 0.29136 0.649807
13 = 0.41456 0.649807
14 = 0.66096 0.649807
15 = 0.29136 0.473336
16 = 0.41456 0.473336
17 = 0.53776 0.473336
18 = 0.66096 0.473336
19 = 0 0.971007
20 = 0.1 0.971007
21 = 0.3 0.971007
22 = 0.5 0.971007
23 = 0.6 0.971007
24 = 0.8 0.971007
25 = 1 0.971007
26 = 0.1 0.584567
27 = 0 0.584567
28 = 0.3 0.584567
29 = 0.5 0.584567
30 = 0.6 0.584567
31 = 0.8 0.584567
32 = 1 0.584567
33 = 0.1 0.391348
34 = 0 0.391348
35 = 0.3 0.391348
36 = 0.5 0.391348
37 = 0.6 0.391348
38 = 0.8 0.391348
39 = 1 0.391348
40 = 0.1 0.198128
41 = 0 0.198128
42 = 0.3 0.198128
43 = 0.5 0.198128
44 = 0.6 0.198128
45 = 0.8 0.198128
46 = 1 0.198128
47 = 0.1 0.00490701
48 = 0 0.00490701
49 = 0.3 0.00490701
50 = 0.5 0.00490701
51 = 0.6 0.00490701
52 = 0.8 0.00490701
53 = 1 0.00490701
54 = 0 0.664006
55 = 0.1 0.664006
56 = 0.3 0.664006
57 = 0.5 0.664006
58 = 0.6 0.664006
59 = 0.8 0.664006
60 = 1 0.664006
61 = 0.1 0.593271
62 = 0 0.593271
63 = 0.3 0.593271
64 = 0.5 0.593271
65 = 0.6 0.593271
66 = 0.8 0.593271
67 = 1 0.593271
68 = 0.1 0.557903
69 = 0 0.557903
70 = 0.3 0.557903
71 = 0.5 0.557903
72 = 0.6 0.557903
73 = 0.8 0.557903
74 = 1 0.557903
75 = 0.1 0.522535
76 = 0 0.522535
77 = 0.3 0.522535
78 = 0.5 0.522535
79 = 0.6 0.522535
80 = 0.8 0.522535
81 = 1 0.522535
82 = 0.5 0.36338
}
1
{
0 = 0.03125 0.961974
1 = 0.124038 0.961974
2 = 0.312019 0.961974
3 = 0.5 0.961974
4 = 0.59399 0.961974
5 = 0.781971 0.961974
6 = 0.96875 0.961974
7 = 0.124038 0.86061
8 = 0.03125 0.86061
9 = 0.312019 0.86061
10 = 0.5 0.86061
11 = 0.59399 0.86061
12 = 0.781971 0.86061
13 = 0.96875 0.86061
14 = 0.124038 0.809928
15 = 0.03125 0.809928
16 = 0.312019 0.809928
17 = 0.5 0.809928
18 = 0.59399 0.809928
19 = 0.781971 0.809928
20 = 0.96875 0.809928
21 = 0.124038 0.759247
22 = 0.03125 0.759247
23 = 0.312019 0.759247
24 = 0.5 0.759247
25 = 0.59399 0.759247
26 = 0.781971 0.759247
27 = 0.96875 0.759247
28 = 0.124038 0.708565
29 = 0.03125 0.708565
30 = 0.312019 0.708565
31 = 0.5 0.708565
32 = 0.59399 0.708565
33 = 0.781971 0.708565
34 = 0.96875 0.708565
35 = 0.124038 0.607202
36 = 0.03125 0.607202
37 = 0.312019 0.607202
38 = 0.5 0.607202
39 = 0.59399 0.607202
40 = 0.781971 0.607202
41 = 0.96875 0.607202
42 = 0.124038 0.55652
43 = 0.03125 0.55652
44 = 0.312019 0.55652
45 = 0.5 0.55652
46 = 0.59399 0.55652
47 = 0.781971 0.55652
48 = 0.96875 0.55652
49 = 0.124038 0.505838
50 = 0.03125 0.505838
51 = 0.312019 0.505838
52 = 0.5 0.505838
53 = 0.59399 0.505838
54 = 0.781971 0.505838
55 = 0.96875 0.505838
56 = 0.5 0.27777
57 = 0.298294 0.205573
58 = 0.03125 0.221916
59 = 0.03125 0.205573
60 = 0.0999622 0.221916
61 = 0.0999622 0.205573
62 = 0.232183 0.221916
63 = 0.232183 0.205573
64 = 0.199128 0.143005
65 = 0.298294 0.135386
66 = 0.03125 0.135386
67 = 0.03125 0.0348624
68 = 0.166072 0.0348624
69 = 0.234276 0.281347
70 = 0.4375 0.221916
71 = 0.4375 0.205573
72 = 0.4375 0.135386
73 = 0.298294 0.0348624
74 = 0.298294 0.221916
75 = 0.366185 0.0345355
76 = 0.4375 0.0348624
}
}
triangle
{
0
{
materialNr = 1
normalVertexNr = 68 72 67
positionVertexNr = 4 0 5
smoothingGroup = 98560
}
1
{
materialNr = 1
normalVertexNr = 72 71 67
positionVertexNr = 0 1 5
smoothingGroup = 18688
}
2
{
materialNr = 1
normalVertexNr = 66 67 70
positionVertexNr = 6 5 2
smoothingGroup = 12416
}
3
{
materialNr = 1
normalVertexNr = 71 70 67
positionVertexNr = 1 2 5
smoothingGroup = 16576
}
4
{
materialNr = 1
normalVertexNr = 66 70 65
positionVertexNr = 6 2 7
smoothingGroup = 8736
}
5
{
materialNr = 1
normalVertexNr = 70 69 65
positionVertexNr = 2 3 7
smoothingGroup = 1792
}
6
{
materialNr = 1
normalVertexNr = 65 69 68
positionVertexNr = 7 3 4
smoothingGroup = 5248
}
7
{
materialNr = 1
normalVertexNr = 69 72 68
positionVertexNr = 3 0 4
smoothingGroup = 32928
}
8
{
materialNr = 1
normalVertexNr = 63 66 65
positionVertexNr = 8 6 7
smoothingGroup = 2144
}
9
{
materialNr = 1
normalVertexNr = 59 61 67
positionVertexNr = 10 9 5
smoothingGroup = 1536
}
10
{
materialNr = 1
normalVertexNr = 67 61 68
positionVertexNr = 5 9 4
smoothingGroup = 66064
}
11
{
materialNr = 1
normalVertexNr = 68 61 65
positionVertexNr = 4 9 7
smoothingGroup = 4116
}
12
{
materialNr = 1
normalVertexNr = 63 59 66
positionVertexNr = 8 10 6
smoothingGroup = 65
}
13
{
materialNr = 1
normalVertexNr = 67 66 59
positionVertexNr = 5 6 10
smoothingGroup = 5121
}
14
{
materialNr = 1
normalVertexNr = 63 65 61
positionVertexNr = 8 7 9
smoothingGroup = 2052
}
15
{
materialNr = 0
normalVertexNr = 58 62 57
positionVertexNr = 11 9 12
smoothingGroup = 448
}
16
{
materialNr = 0
normalVertexNr = 62 60 57
positionVertexNr = 9 10 12
smoothingGroup = 160
}
17
{
materialNr = 0
normalVertexNr = 64 56 60
positionVertexNr = 8 13 10
smoothingGroup = 24
}
18
{
materialNr = 0
normalVertexNr = 57 60 56
positionVertexNr = 12 10 13
smoothingGroup = 52
}
19
{
materialNr = 0
normalVertexNr = 64 62 56
positionVertexNr = 8 9 13
smoothingGroup = 10
}
20
{
materialNr = 0
normalVertexNr = 56 62 58
positionVertexNr = 13 9 11
smoothingGroup = 67
}
21
{
materialNr = 1
normalVertexNr = 71 72 55
positionVertexNr = 1 0 14
smoothingGroup = 2060
}
22
{
materialNr = 1
normalVertexNr = 70 71 55
positionVertexNr = 2 1 14
smoothingGroup = 74
}
23
{
materialNr = 1
normalVertexNr = 69 70 55
positionVertexNr = 3 2 14
smoothingGroup = 259
}
24
{
materialNr = 1
normalVertexNr = 72 69 55
positionVertexNr = 0 3 14
smoothingGroup = 37
}
25
{
materialNr = 0
normalVertexNr = 56 58 57
positionVertexNr = 13 11 12
smoothingGroup = 261
}
26
{
materialNr = 0
normalVertexNr = 54 53 48
positionVertexNr = 15 16 21
smoothingGroup = 1056
}
27
{
materialNr = 0
normalVertexNr = 53 47 48
positionVertexNr = 16 22 21
smoothingGroup = 8226
}
28
{
materialNr = 0
normalVertexNr = 53 52 47
positionVertexNr = 16 17 22
smoothingGroup = 10
}
29
{
materialNr = 0
normalVertexNr = 52 46 47
positionVertexNr = 17 23 22
smoothingGroup = 4616
}
30
{
materialNr = 0
normalVertexNr = 51 45 52
positionVertexNr = 18 24 17
smoothingGroup = 48
}
31
{
materialNr = 0
normalVertexNr = 45 46 52
positionVertexNr = 24 23 17
smoothingGroup = 2592
}
32
{
materialNr = 0
normalVertexNr = 51 50 45
positionVertexNr = 18 19 24
smoothingGroup = 20
}
33
{
materialNr = 0
normalVertexNr = 50 44 45
positionVertexNr = 19 25 24
smoothingGroup = 268
}
34
{
materialNr = 0
normalVertexNr = 50 49 44
positionVertexNr = 19 20 25
smoothingGroup = 4104
}
35
{
materialNr = 0
normalVertexNr = 49 43 44
positionVertexNr = 20 26 25
smoothingGroup = 4624
}
36
{
materialNr = 0
normalVertexNr = 54 48 49
positionVertexNr = 15 21 20
smoothingGroup = 1028
}
37
{
materialNr = 0
normalVertexNr = 48 43 49
positionVertexNr = 21 26 20
smoothingGroup = 276
}
38
{
materialNr = 0
normalVertexNr = 48 47 42
positionVertexNr = 21 22 27
smoothingGroup = 8384
}
39
{
materialNr = 0
normalVertexNr = 47 41 42
positionVertexNr = 22 28 27
smoothingGroup = 2128
}
40
{
materialNr = 0
normalVertexNr = 47 46 41
positionVertexNr = 22 23 28
smoothingGroup = 4113
}
41
{
materialNr = 0
normalVertexNr = 41 46 40
positionVertexNr = 28 23 29
smoothingGroup = 1029
}
42
{
materialNr = 0
normalVertexNr = 45 39 46
positionVertexNr = 24 30 23
smoothingGroup = 2178
}
43
{
materialNr = 0
normalVertexNr = 40 46 39
positionVertexNr = 29 23 30
smoothingGroup = 9344
}
44
{
materialNr = 0
normalVertexNr = 45 44 39
positionVertexNr = 24 25 30
smoothingGroup = 259
}
45
{
materialNr = 0
normalVertexNr = 44 38 39
positionVertexNr = 25 31 30
smoothingGroup = 97
}
46
{
materialNr = 0
normalVertexNr = 44 43 38
positionVertexNr = 25 26 31
smoothingGroup = 2592
}
47
{
materialNr = 0
normalVertexNr = 38 43 37
positionVertexNr = 31 26 32
smoothingGroup = 2058
}
48
{
materialNr = 0
normalVertexNr = 48 42 43
positionVertexNr = 21 27 26
smoothingGroup = 385
}
49
{
materialNr = 0
normalVertexNr = 37 43 42
positionVertexNr = 32 26 27
smoothingGroup = 1027
}
50
{
materialNr = 0
normalVertexNr = 42 41 36
positionVertexNr = 27 28 33
smoothingGroup = 2592
}
51
{
materialNr = 0
normalVertexNr = 41 35 36
positionVertexNr = 28 34 33
smoothingGroup = 776
}
52
{
materialNr = 0
normalVertexNr = 41 40 35
positionVertexNr = 28 29 34
smoothingGroup = 14
}
53
{
materialNr = 0
normalVertexNr = 35 40 34
positionVertexNr = 34 29 35
smoothingGroup = 6146
}
54
{
materialNr = 0
normalVertexNr = 39 33 40
positionVertexNr = 30 36 29
smoothingGroup = 8720
}
55
{
materialNr = 0
normalVertexNr = 34 40 33
positionVertexNr = 35 29 36
smoothingGroup = 2816
}
56
{
materialNr = 0
normalVertexNr = 39 38 33
positionVertexNr = 30 31 36
smoothingGroup = 84
}
57
{
materialNr = 0
normalVertexNr = 38 32 33
positionVertexNr = 31 37 36
smoothingGroup = 1156
}
58
{
materialNr = 0
normalVertexNr = 38 37 32
positionVertexNr = 31 32 37
smoothingGroup = 392
}
59
{
materialNr = 0
normalVertexNr = 32 37 31
positionVertexNr = 37 32 38
smoothingGroup = 832
}
60
{
materialNr = 0
normalVertexNr = 42 36 37
positionVertexNr = 27 33 32
smoothingGroup = 1060
}
61
{
materialNr = 0
normalVertexNr = 31 37 36
positionVertexNr = 38 32 33
smoothingGroup = 84
}
62
{
materialNr = 0
normalVertexNr = 36 35 29
positionVertexNr = 33 34 39
smoothingGroup = 385
}
63
{
materialNr = 0
normalVertexNr = 35 27 29
positionVertexNr = 34 40 39
smoothingGroup = 33
}
64
{
materialNr = 0
normalVertexNr = 35 34 27
positionVertexNr = 34 35 40
smoothingGroup = 4144
}
65
{
materialNr = 0
normalVertexNr = 27 34 25
positionVertexNr = 40 35 41
smoothingGroup = 80
}
66
{
materialNr = 0
normalVertexNr = 33 23 34
positionVertexNr = 36 42 35
smoothingGroup = 265
}
67
{
materialNr = 0
normalVertexNr = 25 34 23
positionVertexNr = 41 35 42
smoothingGroup = 72
}
68
{
materialNr = 0
normalVertexNr = 33 32 23
positionVertexNr = 36 37 42
smoothingGroup = 1027
}
69
{
materialNr = 0
normalVertexNr = 32 21 23
positionVertexNr = 37 43 42
smoothingGroup = 34
}
70
{
materialNr = 0
normalVertexNr = 32 31 21
positionVertexNr = 37 38 43
smoothingGroup = 4640
}
71
{
materialNr = 0
normalVertexNr = 21 31 19
positionVertexNr = 43 38 44
smoothingGroup = 4104
}
72
{
materialNr = 0
normalVertexNr = 36 29 31
positionVertexNr = 33 39 38
smoothingGroup = 146
}
73
{
materialNr = 0
normalVertexNr = 19 31 29
positionVertexNr = 44 38 39
smoothingGroup = 10
}
74
{
materialNr = 2
normalVertexNr = 30 28 18
positionVertexNr = 39 40 45
smoothingGroup = 2052
}
75
{
materialNr = 2
normalVertexNr = 28 17 18
positionVertexNr = 40 46 45
smoothingGroup = 1284
}
76
{
materialNr = 2
normalVertexNr = 28 26 17
positionVertexNr = 40 41 46
smoothingGroup = 1026
}
77
{
materialNr = 2
normalVertexNr = 26 16 17
positionVertexNr = 41 47 46
smoothingGroup = 515
}
78
{
materialNr = 2
normalVertexNr = 24 15 26
positionVertexNr = 42 48 41
smoothingGroup = 132
}
79
{
materialNr = 2
normalVertexNr = 15 16 26
positionVertexNr = 48 47 41
smoothingGroup = 896
}
80
{
materialNr = 2
normalVertexNr = 24 22 15
positionVertexNr = 42 43 48
smoothingGroup = 20
}
81
{
materialNr = 2
normalVertexNr = 22 14 15
positionVertexNr = 43 49 48
smoothingGroup = 1041
}
82
{
materialNr = 2
normalVertexNr = 22 20 14
positionVertexNr = 43 44 49
smoothingGroup = 257
}
83
{
materialNr = 2
normalVertexNr = 20 13 14
positionVertexNr = 44 50 49
smoothingGroup = 896
}
84
{
materialNr = 2
normalVertexNr = 30 18 20
positionVertexNr = 39 45 44
smoothingGroup = 2112
}
85
{
materialNr = 2
normalVertexNr = 18 13 20
positionVertexNr = 45 50 44
smoothingGroup = 224
}
86
{
materialNr = 2
normalVertexNr = 18 17 12
positionVertexNr = 45 46 51
smoothingGroup = 280
}
87
{
materialNr = 2
normalVertexNr = 17 11 12
positionVertexNr = 46 52 51
smoothingGroup = 10248
}
88
{
materialNr = 2
normalVertexNr = 17 16 11
positionVertexNr = 46 47 52
smoothingGroup = 2113
}
89
{
materialNr = 2
normalVertexNr = 11 16 10
positionVertexNr = 52 47 53
smoothingGroup = 16452
}
90
{
materialNr = 2
normalVertexNr = 15 9 16
positionVertexNr = 48 54 47
smoothingGroup = 296
}
91
{
materialNr = 2
normalVertexNr = 10 16 9
positionVertexNr = 53 47 54
smoothingGroup = 16432
}
92
{
materialNr = 2
normalVertexNr = 15 14 9
positionVertexNr = 48 49 54
smoothingGroup = 1034
}
93
{
materialNr = 2
normalVertexNr = 14 8 9
positionVertexNr = 49 55 54
smoothingGroup = 8198
}
94
{
materialNr = 2
normalVertexNr = 14 13 8
positionVertexNr = 49 50 55
smoothingGroup = 4612
}
95
{
materialNr = 2
normalVertexNr = 8 13 7
positionVertexNr = 55 50 56
smoothingGroup = 7168
}
96
{
materialNr = 2
normalVertexNr = 18 12 13
positionVertexNr = 45 51 50
smoothingGroup = 49
}
97
{
materialNr = 2
normalVertexNr = 7 13 12
positionVertexNr = 56 50 51
smoothingGroup = 1027
}
98
{
materialNr = 2
normalVertexNr = 12 11 6
positionVertexNr = 51 52 57
smoothingGroup = 8832
}
99
{
materialNr = 2
normalVertexNr = 11 5 6
positionVertexNr = 52 58 57
smoothingGroup = 4480
}
100
{
materialNr = 2
normalVertexNr = 11 10 5
positionVertexNr = 52 53 58
smoothingGroup = 262
}
101
{
materialNr = 2
normalVertexNr = 5 10 4
positionVertexNr = 58 53 59
smoothingGroup = 3074
}
102
{
materialNr = 2
normalVertexNr = 9 3 10
positionVertexNr = 54 60 53
smoothingGroup = 145
}
103
{
materialNr = 2
normalVertexNr = 4 10 3
positionVertexNr = 59 53 60
smoothingGroup = 1664
}
104
{
materialNr = 2
normalVertexNr = 9 8 3
positionVertexNr = 54 55 60
smoothingGroup = 8257
}
105
{
materialNr = 2
normalVertexNr = 8 2 3
positionVertexNr = 55 61 60
smoothingGroup = 352
}
106
{
materialNr = 2
normalVertexNr = 8 7 2
positionVertexNr = 55 56 61
smoothingGroup = 2096
}
107
{
materialNr = 2
normalVertexNr = 2 7 1
positionVertexNr = 61 56 62
smoothingGroup = 152
}
108
{
materialNr = 2
normalVertexNr = 12 6 7
positionVertexNr = 51 57 56
smoothingGroup = 518
}
109
{
materialNr = 2
normalVertexNr = 1 7 6
positionVertexNr = 62 56 57
smoothingGroup = 76
}
110
{
materialNr = 2
normalVertexNr = 6 5 0
positionVertexNr = 57 58 63
smoothingGroup = 4144
}
111
{
materialNr = 2
normalVertexNr = 0 5 4
positionVertexNr = 63 58 59
smoothingGroup = 2072
}
112
{
materialNr = 2
normalVertexNr = 0 4 3
positionVertexNr = 63 59 60
smoothingGroup = 524
}
113
{
materialNr = 2
normalVertexNr = 3 2 0
positionVertexNr = 60 61 63
smoothingGroup = 262
}
114
{
materialNr = 2
normalVertexNr = 0 2 1
positionVertexNr = 63 61 62
smoothingGroup = 131
}
115
{
materialNr = 2
normalVertexNr = 0 1 6
positionVertexNr = 63 62 57
smoothingGroup = 97
}
}
}